Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Arabian journal of chemistry ; 2023.
Article in English | EuropePMC | ID: covidwho-2282944

ABSTRACT

Graphical abstract Natural products play an irreplaceable role in the treatment of SARS-CoV-2 infection. Nevertheless, the underlying molecular mechanisms involved remain elusive. To better understand their potential therapeutic effects, more validation studies are needed to explore underlying mechanisms systematically. This study aims to explore the potential targets of action and signaling pathways of cepharanthine for the treatment of COVID-19. This study revealed that a total of 173 potential targets of action for Cepharanthine and 86 intersectional targets for Cepharanthine against COVID-19 were screened and collected. Gene Ontology enrichment analysis suggested that inflammatory, immune cell and enzyme activities were the critical terms for cepharanthine against COVID-19. Pathway enrichment analysis showed that five pathways associated with COVID-19 were the main signaling pathways for the treatment of COVID-19 via cepharanthine. Molecular docking and molecular dynamics simulations suggested that 6 core targets were regarded as potential targets for cepharanthine against COVID-19. In brief, the study demonstrates that cepharanthine may play an important role in the treatment of SARS-CoV-2 infection through its harmonious activity against SARS-CoV-2 pathways and multiple related targets. This article provides valuable insights required to respond effectively to concerns of western medical community.

2.
Arab J Chem ; 16(6): 104722, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2282945

ABSTRACT

Natural products play an irreplaceable role in the treatment of SARS-CoV-2 infection. Nevertheless, the underlying molecular mechanisms involved remain elusive. To better understand their potential therapeutic effects, more validation studies are needed to explore underlying mechanisms systematically. This study aims to explore the potential targets of action and signaling pathways of cepharanthine for the treatment of COVID-19. This study revealed that a total of 173 potential targets of action for Cepharanthine and 86 intersectional targets for Cepharanthine against COVID-19 were screened and collected. Gene Ontology enrichment analysis suggested that inflammatory, immune cell and enzyme activities were the critical terms for cepharanthine against COVID-19. Pathway enrichment analysis showed that five pathways associated with COVID-19 were the main signaling pathways for the treatment of COVID-19 via cepharanthine. Molecular docking and molecular dynamics simulations suggested that 6 core targets were regarded as potential targets for cepharanthine against COVID-19. In brief, the study demonstrates that cepharanthine may play an important role in the treatment of SARS-CoV-2 infection through its harmonious activity against SARS-CoV-2 pathways and multiple related targets. This article provides valuable insights required to respond effectively to concerns of western medical community.

3.
J Agric Food Chem ; 70(30): 9577-9583, 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1960214

ABSTRACT

The development of efficient, economic, reliable, and accurate monitoring of hypochlorite (ClO-) in food matrices is in great demand for food safety assessment, particularly during its massive use against the COVID-19 epidemic. Here, we prepared an aggregation-induced emission (AIE) fluorophore tetraphenylethylene (TPE)-incorporated curcumin-based hybrid ratiometric fluorescence nanoprobe (Curcumin/TPE@HyNPs) through amphiphilic phospholipid polymer-powered nanoprecipitation, which exhibited a fast, highly sensitive, and selective response to the residual ClO- in real food matrices. Because of the inner filter effect (IFE) from curcumin toward TPE inside the nanoprobe, the bright fluorescence of TPE aggregation at ∼437 nm was effectively quenched, along with an enhanced fluorescence of curcumin at ∼478 nm. Once there was a ClO- residue in food matrices, ClO- triggered the oxidation of o-methoxyphenol inside curcumin and led to the almost complete absorption collapse, thereby terminating curcumin fluorescence at ∼478 nm and the IFE process. Accordingly, the fluorescence of TPE at ∼437 nm was recovered. In this case, a ratiometric fluorescent response of Curcumin/TPE@HyNPs toward the residual ClO- in food matrices (e.g., milk) was proposed with a low detection limit of 0.353 µM and a rapid response time of 140.0 s. Notably, the phospholipid polymer as the protection layer effectively reduced/evaded the nonspecific binding of signal reporters inside the nanoprobe, facilitating it to directly monitor the residual ClO- in real food matrices. This work provided a novel approach to utilize the unconventional AIE luminophors for constructing the efficient and reliable early warning mechanisms toward various food contaminants.


Subject(s)
COVID-19 , Curcumin , Fluorescent Dyes/chemistry , Humans , Hypochlorous Acid/chemistry , Phospholipids , Polymers
5.
China CDC Wkly ; 3(2): 30-33, 2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1013668
SELECTION OF CITATIONS
SEARCH DETAIL